Approximate Dynamic Programming by Linear Programming for Stochastic Scheduling

نویسندگان

  • Mohamed Mostagir
  • Nelson Uhan
چکیده

In stochastic scheduling, we want to allocate a limited amount of resources to a set of jobs that need to be serviced. Unlike in deterministic scheduling, however, the parameters of the system may be stochastic. For example, the time it takes to process a job may be subject to random fluctuations. Stochastic scheduling problems occur in a variety of practical situations, such as manufacturing, construction, and compiler optimization. As in deterministic scheduling, the set of stochastic scheduling problems is incredibly large and diverse. One important class of models involves scheduling a fixed number of jobs on a fixed number of identical parallel machines while minimizing a given performance measure. The processing times of the jobs are assumed to follow some joint probability distribution. In addition, there may be precedence constraints, or interdependencies between the jobs that require certain jobs not be scheduled until others are completed. The deterministic counterpart to this class of problems has been studied extensively [KSW98]. A näıve approach to these problems would be to take the expected processing times and use the algorithms for the deterministic problems. Unfortunately, it is easy to construct examples that shows that this approach can produce solutions that are arbitrarily bad. Fortunately, however, this class of stochastic scheduling problems can be easily cast as a Markov decision process (MDP) and therefore can be attacked by dynamic programming methods. Results for this class of stochastic scheduling problems are somewhat scattered, and have been obtained using a variety of methods. Rothkopf [R66] showed that for one machine without precedence constraints, an index rule minimizes the expected sum of weighted completion times for arbitrary processing time probability distributions. Möhring, Radermacher and Weiss [MRW84, MRW85] study the analytic properties of various classes of scheduling policies, and determine optimal policies for special cases. Möhring, Schulz, and Uetz [MSU99] developed approximation algorithms for a variety of stochastic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation

This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...

متن کامل

OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT

Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by  many researchers. Considering the quantity discount in  purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In  this paper, stochastic dyn...

متن کامل

A Stochastic Model for Prioritized Outpatient Scheduling in a Radiology Center

This paper discussed the scheduling problem of outpatients in a radiology center with an emphasis on priority. To more compatibility to real-world conditions, we assume that the elapsed times in different stages to be uncertain that follow from the specific distribution function. The objective is to minimize outpatients’ total spent time in a radiology center. The problem is formulated as a fle...

متن کامل

A multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming

Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...

متن کامل

A stochastic model for project selection and scheduling problem

Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...

متن کامل

Expected Duration of Dynamic Markov PERT Networks

Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004